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Abstract We consider the formulation of the gravity theory first suggested by Regge and
Teitelboim where the space-time is a four-dimensional surface in a flat ten-dimensional
space. We investigate a canonical formalism for this theory following the approach sug-
gested by Regge and Teitelboim. Under constructing the canonical formalism we impose
additional constraints agreed with the equations of motion. We obtain the exact form of
the first-class constraint algebra. We show that this algebra contains four constraints which
form a subalgebra (the ideal), and if these constraints are fulfilled, the algebra becomes the
constraint algebra of the Arnowitt-Deser-Misner formalism of Einstein’s gravity. The rea-
sons for the existence of additional first-class constraints in the canonical formalism are
discussed.

Keywords Isometric embedding · Theory of gravity · Canonical formalism · Constraint
algebra

1 Introduction

More than 30 years ago, in 1975 T. Regge and C. Teitelboim suggested a formulation of
gravity [1] similar to the formulation of string theory. They assumed that our space-time is
a four-dimensional surface in ten-dimensional Minkowski space R1,9 with one timelike and
nine spacelike dimensions. In this case the variables describing the gravity are the embed-
ding function of this surface into the ambient space. The authors take the standard Einstein-
Hilbert expression for the action. In this expression they replace the metric by the induced
metric expressed in terms of the embedding function. We will call this formulation of grav-
ity the embedding theory. In this approach the equations of motion (the “Regge-Teitelboim
equations”) appear to be more general than the Einstein equations and they contain extra
solutions.
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To overcome the problem of extra solutions T. Regge and C. Teitelboim suggested in
[1] to impose additional constraints Gμ⊥ = 0 (“Einstein’s constraints”), where Gμν is the
Einstein tensor, μ,ν, . . . = 0,1,2,3, and the symbol ⊥ denotes the direction orthogonal to
the constant time surface. While constructing the canonical formalism these constraints are
considered similarly to the primary constrains, resulting in a system of eight constraints. We
will call the theory arising from such approach the Regge-Teitelboim formulation of gravity,
in contrast to the embedding theory.

The approach to the gravity based on the consideration of a surface in a flat Minkowski
space could be more convenient than a standard approach when we try to develop a quantum
theory of gravity, since in this case we have a possibility to formulate the causality principle
more clearly. In the quantum field theory the causality principle usually means the commuta-
tivity of operators related to areas separated by a spacelike interval. This principle is difficult
to formulate in the framework of the standard gravity formulation in terms of metric gμν ,
because the interval between points is determined by the metric which is an operator itself.
Therefore for two specific points of the space-time it is impossible to determine what kind
of interval separates them independently of a specific state. In the case of the description
of gravity as a dynamics of a three-dimensional surface in a flat ambient space, we can try
to work out a quantum field theory giving this gravity in the classical limit. In this case the
problem of formulation of the causality principle would be solved, since the causality in the
flat ambient space can be determined by standard means of quantum field theory.

The Regge-Teitelboim formulation of gravity has been discussed in the work [2] pub-
lished immediately after [1]. The authors remarked that the Regge-Teitelboim equations are
trilinear in the second derivatives of the embedding function. This fact is very significant
for this approach as it obstructs linearizing the theory near the flat surface. Also in [2] the
problem of absence of uniqueness of the embedding is discussed. The lack of uniqueness
causes a question whether the transfer from one surface to another with the same metric
corresponds to the change of some physical degrees of freedom, or such a transfer should
be considered as “a change of the embedding gauge”. The discussion of these problems is
beyond the scope of our article.

In the paper [2] it is also noted that an artificial, ad hoc, imposing of additional constraints
to the theory seems not quite satisfactory and that a more satisfactory alternative would
be to find another action whose Euler-Lagrange equation would be equivalent to Einstein
equations. Such an action was suggested in the paper [10]. In Sect. 4 of our paper we clarify
the way of building the action and discuss the meaning of the existence of additional first-
class constraints in the canonical formalism.

After the articles [1, 2] the idea of embedding was used for description of gravity quite
often. In particular, the canonical formalism for the embedding theory without imposing
Einstein’s constraints was investigated in [3–5]. Such a canonical formalism turns out to be
very complicated. Among recent works using the idea of embedding we mark [6–8]. An
extended bibliography related to the embedding theory and similar problems can be found
in [9].

In the work [1] the form of the constraints system for Regge-Teitelboim formulation of
gravity was found. Also the problem has been formulated to investigate the algebra of these
constraints and to verify whether these constraints are the first-class constraints. However
this problem is not completely solved by now. It is probably due to the fact that one of
constraints in [1] was written incorrectly, as it was shown in [10], see details in Sect. 2.

We started to work on this problem in the article [11]. It was analyzed in detail under what
conditions the imposition of Einstein’s constraints turns the Regge-Teitelboim equations
into the Einstein’s equations. This is true in generic case, i.e., except some special values
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of variables at a fixed instant. The canonical formalism for Regge-Teitelboim formulation
of gravity was built anew in [10] with a supplementary imposition of Einstein’s constraints.
A correct form of all constraints was obtained, however the constraint algebra has not been
found completely. In this paper we are completing the solution of the problem. We perform
an accurate calculation of the Poisson brackets between constraints and, as a result, we
obtain a first-class constraint algebra for Regge-Teitelboim formulation of gravity.

For convenience we describe in Sect. 2 the construction of the canonical formalism for
Regge-Teitelboim formulation of gravity following [10]. We do it in particular in order to
explain why we regard that in [1] one of constraints was written incorrectly and to show
how we obtain a correct form of all constraints.

Section 3 contains the main result of this paper. In this section we find all Poisson brack-
ets between constraints and we obtain the first-class constraint algebra. We also discuss the
relation between this algebra and the constraint algebra of Arnowitt-Deser-Misner formal-
ism for the Einstein’s gravity. The formalism used in calculations is described in [10, 11].

2 Canonical Formalism with Additionally Imposed Einstein’s Constraints

In this section we build a canonical formalism for Regge-Teitelboim formulation of gravity
following [10]. We additionally impose Einstein’s constraints as it was suggested in [1].

The embedding function determining the four-dimensional surface W 4 in the flat ten-
dimensional space R1,9 is the map

ya(xμ) : R4 −→ R1,9. (1)

Here and below, the indices a, b, . . . run over the values 0,1,2, . . . ,9; and ya are the
Lorentzian coordinates in R1,9. A constant metric ηab = diag(1,−1,−1, . . . ,−1) in the am-
bient space R1,9 can easily rise and lower indices. It induces on the surface W 4 the metric

gμν = ηab ∂μya ∂νy
b = ηab ea

μeb
ν , (2)

where ea
μ ≡ ∂μya .

We take the theory action in the form of the standard Einstein-Hilbert expression

S =
∫

d4x
√−g R, (3)

where we substitute the induced metric expressed in terms of the embedding function ya(x)

by formula (2). We consider the gravity with matter absent, because adding matter does not
play a fundamental role in the analysis of the theory.

Note that the issue of changing the physical content of the theory under a non-point
change of variables including time derivatives was studied in paper [12]. It has been shown,
under some assumptions, that if after the change of variables the higher derivatives are con-
tained in the Lagrangian only in the form of a combination being a total time derivative, then
the physical content of the theory remains unchanged. Substituting (2) in the action (3), the
above condition is fulfilled (see below). Nevertheless in this case the result [12] is inapplica-
ble, as the assumptions made there are violated. In particular, the change of variables (2) is
quadratic whereas in the paper [12] only infinitesimal transformations are considered.

Varying action (3) with respect to ya(x) gives the Regge-Teitelboim equations which can
be written as

Gμν ba
μν = 0, (4)
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where Gμν is Einstein’s tensor, and

ba
μν = Π⊥a

b ∂μ∂νy
b = ∇μea

ν (5)

is the second fundamental form of the surface. Here ∇μ is the covariant derivative, and the
quantity Π⊥a

b is the projector on the space orthogonal to the surface W 4 at a given point.
We note that although the free index a ranges over 10 values, there are only 6 independent
equations, and the rest 4 equations satisfy identically because of the properties of the second
fundamental form of the surface.

Besides the solutions of Einstein equations Gμν = 0, (4) contain extra solutions which
can be excluded (in general case) by imposing at the initial instant the Einstein’s constraints

nμGμν = 0, (6)

where nμ is a unit vector normal to surfaces x0 = const at each point (see [10, 11]).
For developing a canonical formalism it is convenient to drop the total derivative term in

the integrand in (3) and to rewrite the action under the Arnowitt-Deser-Misner (ADM) form
[13]:

S =
∫

d4x
√−g

(
(Ki

i )
2 − KikK

ik + 3

R
)
, (7)

where Kik is the second fundamental form of the surface t = const considered as a subman-
ifold in W 4. Here and below, the indices i, k, . . . range the values 1,2,3, and we label the
quantities related to the surface t = const with the digit “3” over the letter.

If we rewrite this expression in terms of the embedding function ya(x) it becomes

S =
∫

d4x
√−g

(
na nb

3

b
a
ik

3

b
b
lmLik,lm + 3

R
)
, (8)

where we introduced

Lik,lm = 3
g ik

3
g lm − 1

2

( 3
g il

3
g km + 3

g im
3
g kl

)
, Lik,lm = Lki,lm = Llm,ik (9)

(this quantity is equal to a known Wheeler-De Witt metric within a factor). The action (8)
can be rewritten in the form where the derivatives ẏa ≡ ∂0y

a of the variables ya(x) with
respect to the time x0 are written explicitly:

S =
∫

dx0 L(ya, ẏa),

L =
∫

d3x
1

2

(
ẏa Bab ẏb√
ẏa

3

Π⊥ ab ẏb

+
√

ẏa
3

Π⊥ ab ẏb Bc
c

)
,

(10)

where the quantity

Bab = 2

√
− 3

g
3

b
a
ik

3

b
b
lmLik,lm, (11)

as well as the projection operator
3

Π⊥ ab do not contain time derivatives.
We find the generalized momentum πa for the variable ya from action (10):

πa = δL

δẏa
= Babn

b − 1

2
na

(
ncB

cdnd − Bc
c

)
, (12)
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where we use the formula

na =
3

Π⊥ a
b ẏb√

ẏc
3

Π⊥ cd ẏd

. (13)

We suppose that besides the primary constraints appearing from this equality, four Ein-
stein’s constraints (6) are also satisfied. As shown in [10, 11], they can be written as

H0 = 1

2

(
ncB

cdnd − Bc
c

) ≈ 0, (14)

Hi = −2

√
− 3

g
3∇k

(
Lik,lm

3

b
a
lm na

) ≈ 0. (15)

We note that the definitions of the constraints (14) differ from these used in [10] by the
factor 1/2.

If we use the constraint (14) in equality (12), then it takes a simple form

πa = Babn
b. (16)

Taking account of (11) and of the properties of the quantity
3

b
a
ik , we immediately obtain three

primary constraints

Φi = πa

3
e a

i ≈ 0. (17)

One more constraint, the fourth one, has to appear. In [1] it was obtained from the unit vector
nb normalization under the form

(
B−1π

)2 − 1 ≈ 0, (18)

where B−1 meaned the inversion of matrix B in seven-dimensional subspace normal to the
surface W 3. However, this form was incorrect, because the matrix B has rank 6 in general
case and could not be inverted in the seven-dimensional subspace mentioned above.

Indeed, the quantity
3

b
a
ik can be considered as a set of six vectors (at fixed values of

indices i, k over which it is symmetric). On the other hand, this quantity satisfies three

identities
3

b
a
ik

3
e a,l = 0. Therefore, in general case there exists a unique vector wa determined

by conditions

wa

3
e a

l = 0, wa

3

b
a
ik = 0, |waw

a| = 1. (19)

The matrix Bab gives a zero when it acts on this vector lying in the seven-dimensional
subspace mentioned above. Hence, it can not be inverted in this subspace. Instead of (18)
the fourth primary constraint has to be written as

Ψ 4 = πaw
a ≈ 0 (20)

(the reason for such notation will be obvious below) and the condition of normalization of
vector nb does not lead to new limitations.

Using formulas (10), (13), (16), one easily founds that the Hamiltonian of the theory

H =
∫

d3x πaẏ
a − L (21)
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vanishes. Therefore, the generalized Hamiltonian reduces to a linear combination of con-
straints (14), (15), (17), (20).

In the canonical formalism, constraints must be expressed via generalized coordinates
and momenta, i.e., via ya and πa but not ẏa in our case. Constraints (17) and (20) satisfy
this requirement (we note that vector wa determined by conditions (19) depends on ya ,
but not on ẏa), while constraints (14) and (15) do not satisfy it. They must therefore be
transformed to the necessary form. For this, we introduce the quantity αik

a unambiguously
determined by the conditions

αik
a = αki

a , αik
a

3
e a

l = 0, αik
a wa = 0, αik

a

3

b
a
lm = 1

2

(
δi
l δ

k
m + δi

mδk
l

)
. (22)

The value αik
a can be considered as inverse to

3

b
a
lm, and

αik
b

3

b
a
ik = 3

Π⊥ a
b − wawb

wcwc

, (23)

where the right part contains the projector on the six-dimensional subspace normal to the
surface W 3 and to the vector wa .

It is clear that αik
a as well as wa depends on ya but not on ẏa . Relation (16) implies that

3

b
b
iknb = 1

2

√
− 3

g

L̂ik,lm αlm
a πa, (24)

where

L̂pr,lm = 1

2

(
gprglm − gplgrm − gpmgrl

)
,

L̂pr,lmLik,lm = 1

2

(
δi
p δk

r + δi
r δk

p

)
.

(25)

Using formula (24), the constraints (14),(15) can be expressed in terms of ya and πa . It is

convenient to use a linear combination Ψ i = Hi + 3
g ikΦk instead of the constraint Hi . As a

result, we have a set of eight constraints:

Φi = πa

3
e a

i , Ψ i = −
√

− 3
g

3∇k

(
1√
− 3

g

πaαik
a

)
+ πa 3

e i
a, Ψ 4 = πaw

a,

H0 = 1

4

√
− 3

g

πaαik
a L̂ik,lmαlm

b πb −
√

− 3
g

3

R .

(26)

We can see that all constraints except H0 are linear in momentum πa , and the constraint H0

is quadratic.

3 Constraint Algebra

In this section we find the exact form of all Poisson brackets between the constraints. It will
be seen that these Poisson brackets are linear combinations of the constraints, therefore this
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set of eight constraints forms a first-class constraint algebra for Regge-Teitelboim formula-
tion of gravity. We drop some tedious algebraic transformations using formulas described in
[10, 11].

It is convenient to work with constraints convoluted with arbitrary functions. It is also
convenient to join constraints Ψ i and Ψ 4 under the index A ranging the values 1,2,3,4,
since, as it will be shown, their action on variables has similar geometrical meaning in spite
of their different nature (Ψ 4 is a primary constraint and Ψ i contains an additionally imposed
constraint Hi ). We use denotations

Φξ ≡
∫

d3x Φi(x) ξ i(x) =
∫

d3x πa

3
e a

i ξ
i , H0

ξ ≡
∫

d3x H0(x) ξ(x),

Ψξ ≡
∫

d3x Ψ A(x) ξA(x) =
∫

d3x πa
(
αik

a

3∇ iξk + 3
e k

aξk + waξ4

)

=
∫

d3x πaV A
a ξA,

(27)

where a denotation for the differential operator is used:

V i
a = αik

a

3∇ i + 3
e k

a, V 4
a = wa. (28)

First of all, we find a geometrical meaning of three constraints Φi . For this purpose we
calculate their action on variables. It is easy to find that

{
Φξ ,y

a(x)
} = ξ i(x)∂iy

a(x),

⎧⎨
⎩Φξ,

πa(x)√
− 3

g (x)

⎫⎬
⎭ = ξ i(x)∂i

πa(x)√
− 3

g (x)

, (29)

where {. . .} is a Poisson bracket. It means that Φξ generates a transformation xi → xi +ξ i(x)

of three-dimensional coordinates on the constant-time surface W 3 (it should be noted that
generalized momentum πa is a three-dimensional scalar density). Because all constraints
(27) are covariant (in three-dimensional meaning) equalities, we can write the action of
constraints Φi on them:

{
Φξ ,Φζ

} = −
∫

d3x Φk

(
ξ i

3∇ iζ
k − ζ i

3∇ iξ
k
)
, (30)

{
Φξ ,Ψζ

} = −
∫

d3x
(
Ψ k

(
ξ i

3∇ iζk + ζi

3∇kξ
i
) + Ψ 4 ξ i∂iζ4

)
, (31)

{
Φξ, H0

ζ

} = −
∫

d3x H0 ξ i∂iζ. (32)

Now we find a geometrical meaning of four constraints Ψ A. It is easy to verify that

{
Ψξ ,

3
g ik(x)

}
= 0, (33)

so the constraints Ψ A generate transformations which are an isometric bending of the surface
W 3 (we stress that it is true as for Ψ i so for Ψ 4). We note that the number (four) of the found
generators of three-dimensional isometric bendings corresponds to the difference between
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the dimensionality (ten) of the space into which the three-dimensional surface is embedded
and the number of independent components (six) of the three-dimensional metric.

It is useful to calculate the action of constraints Ψ A on quantity

πlm ≡ −πaαlm
a /2. (34)

The calculation gives a rather long equality where each term is proportional to one of con-
straints Ψ A. Thus, under the action of Ψ A the quantity πlm does not change if Ψ A = 0. Since

H0 and Hi can be expressed by quantities
3
g lm and πlm (see (26)), we can at once conclude

(taking in to account (31)) that the Poisson bracket of constraint Ψξ with constraints Ψ i and
H0 reduces to a linear combination of constraints. After tedious calculations we obtain an
exact result of the action of constraints Ψ A on other constraints:

{
Ψξ ,Ψζ

} =
∫

d3x
(
δya

Ψξ
Ψ ab δyb

Ψζ
− δya

Ψζ
Ψ ab δyb

Ψξ

)
, (35)

{
Ψξ , H0

ζ

} =
∫

d3x
(
δya

Ψξ
Ψ ab δyb

H0
ζ

− δya

H0
ζ

Ψ ab δyb
Ψξ

)
, (36)

where the quantity

Ψ ab = (
Ψ iηab − Ψ 4wbV

i
a

) 3∇ i (37)

is a linear combination of the constraints Ψ A, being also (like V A
a , see (28)) a differential

operator. We have denoted

δya
Ψξ

(x) = {
Ψξ , y

a(x)
} = V aAξA(x), δya

H0
ζ

(x) = {
H0

ζ , y
a(x)

} = B̂acπcζ (38)

for the results of acting of constraints on the independent variable ya(x), where

B̂ac = 1

2

√
− 3

g

αa
ikα

c
lmL̂ik,lm (39)

is the inverted quantity to Bcb in six-dimensional subspace normal to the surface W 3 and to
the vector wa :

B̂acBcb = 3

Π⊥ a
b − wawb

wcwc

(40)

(formulas (22), (23), (25) are used).
In order to complete finding of the full constraint algebra we need to calculate the Poisson

bracket of the constraint H0 with itself. This calculation is the most tedious and gives:

{
H0

ξ , H0
ζ

} =
∫

d3x

(
δya

H0
ξ

Ψ ab δyb

H0
ζ

− δya

H0
ζ

Ψ ab δyb

H0
ξ

+ (
Ψ k − 3

g klΦl

)(
ξ

3∇kζ − ζ
3∇kξ

))
. (41)

The formulas (30)–(31), (35), (36), (41) gives the exact form of the first-class constraint
algebra for Regge-Teitelboim formulation of gravity. It should be noted that the results of
calculation of Poisson brackets (35), (36) and partially (41) have similar structure. The rea-
son for that is unclear.
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According to what is written after the formula (21), the generalized Hamiltonian of the
theory can be written in the form

H gen =
∫

d3x
(
λ̃iΦi + NAΨ A + N0 H0

)
. (42)

As can be seen from (35) (taking into account (37)), the four constraints Ψ A generating
the isometric bending of the surface W 3 form a subalgebra in the full constraint algebra.
It means that the Poisson brackets between them are reduced to their linear combination.
Moreover, it is seen that the Poisson brackets of the constraints Ψ A with all other constraints
(and consequently with the Hamiltonian (42)) also reduce to such a linear combination. Thus
the constraints Ψ A form the ideal. It means that once imposed the constraints Ψ A remain
satisfied in the time independently of satisfying other constraints.

If we limit our consideration of the system with satisfied constraints Ψ A = 0, then its
dynamics will be determined by the Hamiltonian

H̃ =
∫

d3x
(
λ̃iΦi + N0 H0

) =
∫

d3x
(−λ̃i Hi + N0 H0

)

=
∫

d3x

(
−2λ̃i

√
− 3

g
3∇k

(
πik√
− 3

g

)
+ N0

(
πikL̂ik,lmπlm√

− 3
g

−
√

− 3
g

3

R

))
, (43)

where Φi was expressed by Hi , the formulas (26) were applied, and the quantity πik de-

termined by (34) was used. This Hamiltonian as a functional of the quantities
3
g ik and πik

coincides exactly with the known Hamiltonian expression in the ADM formalism. Besides,

it is easy to verify that these quantities
3
g ik and πik are canonically conjugate at Ψ A = 0 (it

should be noted that this condition is necessary only for vanishing of the Poisson bracket{
πik(x),πlm(x̃)

}
). Therefore the dynamics of Regge-Teitelboim formulation of gravity on

the surface of constraints Ψ A = 0 coincides with the dynamics of gravity in the ADM for-
malism.

4 Discussion About Existence of Additional First-Class Constraints

In this section we discuss what could mean the existence in the canonical formalism of
additional constraints which are in involution with the Hamiltonian of the theory and which
form a first-class constraint algebra, probably with other constraints inherent in the theory.
The Einstein’s constraints (14), (15) for Regge-Teitelboim formulation of gravity are just
these additional constraints.

For comparison we consider a simple model in the Minkowski space with the action

S =
∫

dt

∫
d3x

(
1

2
(∂0Ai)(∂0Ai) − 1

4

(
∂iAk − ∂kAi

)(
∂iAk − ∂kAi

))
, (44)

where the independent variable is a three-component field Ai(x). The generalized momen-
tum is the quantity πi = ∂0Ai , the primary constraints are absent. The Hamiltonian has form

H =
∫

d3x

(
1

2
πiπi + 1

4

(
∂iAk − ∂kAi

)(
∂iAk − ∂kAi

))
. (45)
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We consider an additional constraint Φ(x) = ∂iπi(x). It is easy to verify that it is in invo-
lution with the Hamiltonian, so their Poisson bracket {H,Φ(x)} = 0 vanishes. Because of
{Φ(x),Φ(y)} = 0, the quantity Φ(x) is the first-class constraint and can be added to the
Hamiltonian with a Lagrange factor:

H gen =
∫

d3x

(
1

2
πiπi + 1

4

(
∂iAk − ∂kAi

)(
∂iAk − ∂kAi

) + λ∂iπi

)
. (46)

Therefore, the case of the additional imposed constraint Φ(x) in this model is completely
analogous to the case of Einstein’s constraints in Regge-Teitelboim formulation of gravity.

We construct the action S ′ corresponding to the Hamiltonian (46). A new equality for the
generalized velocity reads

∂0Ai = δH gen

∂πi

= πi − ∂iλ. (47)

Expressing the generalized momentum πi from this equality and making the Legendre trans-
form we find the required action

S ′ =
∫

dt

∫
d3x

(
1

2
(∂0Ai + ∂iλ)(∂0Ai + ∂iλ)

− 1

4

(
∂iAk − ∂kAi

)(
∂iAk − ∂kAi

))
. (48)

The Lagrange factor λ(x) related with the additionally imposed constraint appears in this
action as a new independent variable. Denoting A0 = −λ one easy recognizes in expression
(48) the free electrodynamics action. The initial action (44) can be derived from it by fixing
of the gauge A0 = 0.

This example shows that the existence of additional first-class constraints in the canoni-
cal formalism can indicate that the initial theory without additional constraints is a result of
fixing of gauge (probably partial) in some extended theory with an additional gauge sym-
metry. In particular, the initial embedding theory with action (3) having a four-parameter
gauge group, where the independent variable is the embedding function, appears to be the
result of the gauge fixing in Regge-Teitelboim formulation of gravity which has an eight-
parameter gauge group and is described by the Hamiltonian (42). It should be noted that, as
well known, the fixing of gauge in action usually leads to loss of some equations of motion.
That is why the Regge-Teitelboim equations (4) have extra solutions.

The action of the extended theory corresponding to generalized Hamiltonian (42) of
Regge-Teitelboim formulation of gravity was found in [10] in a way completely analogous
to the one described in this section. It can be written in the form of the initial Einstein-Hilbert
action

S =
∫

d4x
√−g′ R(g′), (49)

if we substitute for the metric g′
μν the modification of expression (2):

g′
ik = 3

g ik = ∂iy
a∂kya, g′

0k = ∂0y
a∂kya − Nk, g′

00 = N2
0 + g′

0i

3
g ik g′

0k (50)

(whence we obtain g′00 = 1
N2

0
; we note that these formulas differ from formulas in [10]

by numeric factors because of changing of definition of constraint (14)). Here Nk and N0
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are new independent variables (in addition to ya), which are transformed into Lagrange
multipliers in canonical formalism. The action (49) has an eight-parameter gauge symmetry,
and the value g′

μν appears to be invariant under four of these eight transformations, which
have constraints Ψ A as generators in the canonical formalism.

If we introduce a partial fixing of gauge by conditions

N0 =
√

∂0ya
3

Π⊥ ab∂0yb, Nk = 0, (51)

then the quantity g′
μν coincides with the induced metric, and the action of the extended

theory (49) transforms into the action (3) of the initial embedding theory. If we do not fix
the gauge, then the quantity g′

μν still satisfies (in general case) the Einstein’s equations.
Therefore we can consider the quantity g′

μν to be the metric, which is invariant under addi-
tional symmetry transformation and coincides with the induced metric only in the mentioned
gauge.

A disadvantage of the action (49) of the extended theory is the presence of a singled out
direction of time related to the fact that the time and space components appear in formulas
(50) in a different way. It would be interesting to find a modification of formulas (50) without
singled out time direction but where the equations of motion still would be equivalent to the
Einstein’s equations.
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